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1. INTRODUCTION 
Atmospheric dissociation will be appreciable in the neighbourhood of 

projectiles travelling at speeds greater than 2 km/sec. This introductory 
paper on possible effects of dissociation on the airflow, and hence on the 
drag, stability and aerodynamic heating of such projectiles, is intended 
mainly as a source of ideas for later, more comprehensive investigations. 

The  problem of incorporating the effects of the large energy change 
involved in dissociation into the standard theory of gas flow appears at the 
same time so important and so formidable that it is worth approaching 
slowly. One may usefully begin, on both the theoretical and experimental 
sides, by eliminating the less essential complications which arise from the 
detailed composition of air, and studying the dynamics of a pure dissociating 
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diatomic gas. By keeping within bounds in this way the difficulty of 
imagining what is happening in the flow, one reduces the risk that some 
important feature will be missed. 

The theoretical treatment of the dynamics of a pure dissociating gas 
which follows is concerned principally with properties at densities between 

and 1 of N.T.P., and at temperatures such that dissociation occurs 
appreciably but ionization is negligible. For the gases, 0, and N,, which 
will be principally used for numerical illustration, this means temperatures 
in the approximate range 3000°K to 7000°K. Other gases suitable for 
pioneer experimental work on the problem and comparison with' theory are 
the halogens, which already dissociate appreciably at 1000" K and so can 
be studied with lighter equipment. Thus, Britton, Davidson & Schott 
(1954) have used I,, and Palmer (1955) Br,. 

The problem falls into three main parts, as follows. 

(i) The theory of flow in which thermodynamic equilibrium is main- 
tained everywhere ; this is a good approximation to flow outside the boundary 
layer if the time scale for flow past the body is large compared with the time 
scale for dissociation or recombination. This theory is given in $ 3 ,  after 
the necessary equilibrium thermodynamics has been discussed in 3 2. 

(ii) The quasi-equilibrium theory of the transport properties, including 
radiative heat transfer as well as convective heat and momentum transfer 
in the boundary layer; this theory (to be given in Part 11) is a good 
approximation if the time scale for diffusion across the boundary layer is 
large compared with the time scale for dissociation or recombination. 
Actually, the time scales for flow past the body and for diffusion across 
the boundary layer are the same (which is, indeed, what determines the 
thickness of the boundary layer), and so there is just one condition for 
theories (i) and (ii) to be valid. 

(iii) The theory of flow in which this condition is not satisfied, so that 
large departures from equilibrium occur (not just the small ones supposed 
under heading (ii) to be responsible for the heat and momentum transport) ; 
this theory (to be given in Part 111) includes the theory of the extended 
character of the shock wave and the effect of this on the flow behind it, 
and also the effect on boundary-layer behaviour of the delay in recombination 
of free atoms diffusing into the neighbourhood of the cooled wall. 

The paper begins with a study ($2) of the equilibrium statistical thermo- 
dynamics of a pure dissociating gas. Here, an approximation is found 
which greatly simplifies the analysis and yet introduces only small errors 
for particular gases. One may speak of a hypothetical gas satisfying this 
approximate form of the thermodynamic equations as an ' ideal dissociating 
gas '. The properties of an ideal dissociating gas are given completely once 
three constants Ta, and ud (the ' characteristic ' temperature, density and 
specific energy for dissociation) are given. Different pure dissociating gases 
differ in the values to be assigned to these constants, but otherwise (to the 
good approximation with which they can be treated as ' ideal ' dissociating 
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gases) have all the same thermodynamics ; a single theory, therefore, will 
do for all, whereas if the aproximation were not made separate calculations 
would need to be done for each gas. 

-4pproximations equivalent to those in the thermodynamical theory of 
an ideal dissociating gas are made also in the discussions of quasi-equilibrium 
flow and flow involving large departures from equilibrium in Parts I1 and 111. 
Physically, they amount always to taking the vibrational modes of motion 
of the molecules as everywhere excited to just half their full ‘classical’ 
energy content. At the high temperatures at which this would be expected 
to be a serious underestimate, the molecules have been so reduced in number 
by dissociation, and the energy absorbed in this process has been so large 
a fraction of the total internal energy, that the latter is in fact underestimated 
by a very few per cent. Under these circumstances the gain in simplicity well 
compensates for the loss in accuracy, as has been found many times before 
when hypothetical ideal fluids have been introduced in hydrodynamics. 

Another reason why in this paper the author has avoided the complications 
due to the variation in degree of excitation of the vibrational mode of motion 
is that these complications were rather fully treated (in the absence of 
dissociation) in his recent survey article in the G. I. Taylor Anniversary 
Volume (Lighthill 1956). In the present paper the enquiry into the effects 
of molecular constitution on gas dynamics, begun in that article, is continued 
with a study of the effects of dissociation, but to simplify matters the 
concomitant effects of variation of vibrational excitation are here excluded. 

The papers and books listed in the bibliographies have greatly assisted 
the author in preparing the three parts of this paper. However, like his 
other papers, it could never have been written without extensive private 
discussion and correspondence with friends. The help of Mr E. Wild 
has again been invaluable, and it is a pleasure to thank in addition 
Dr W. Chester, Mr N. C. Freeman, Dr A. G. Gaydon, Dr W. C. Griffith, 
Dr A. R. Kantrowitz, Dr L. Lees, Mr D. J. Lyons, Dr J. S. Rowlinson, 
Dr K. Stewartson, Dr P. Thompson, Mr A. K. Weaver, Dr M. D. Van Dyke, 
and Mr H. K. Zienkiewicz for many useful suggestions. 

2. EQUILIBRIUM THEORY OF A PURE DISSOCIATING DIATOMIC GAS 

2.1. Law of mass action for dissociative equilibrium 
The law governing the equilibrium concentrations in a dissociative 

process 

is well known (see for example Fowler & Guggenheim 1939, §§502-508). 
We have 

A , e A + A  (1) 

where nd is the number of A atoms in volume V at a given temperature T, 
and fA is the partition function of A,  namely the sum 

c cEtkT (3) 
A 2  
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over all quantum states of the A atom in the volume V ;  nA, and f A i  are 
defined similarly, but the energies E in both f a  and fAa are commonly 
measured from the energy of the atom and molecule respectively when 
at rest in their ground states. The factor @IkT (where D is the dissociation 
energy per molecule) is therefore attached to f a ,  to bring both sets of 
energies to a common origin. Equation (2)  says really that the concen- 
trations will adjust themselves in direct proportion to the number of states 
available at the given volume and temperature, bearing in mind the reduced 
availability of high-energy states which results from the Maxwell-Boltzmann 
distribution law. 

The theory as described neglects complications due to gas imperfection, 
that is, contributions to the energy at any given instant from such interactions 
between molecules as are happening at that instant, which are associated 
with pressure reduction due to attraction between molecules and pressure 
increase due to overcrowding (that is, to reduced availability of translational 
states). The corrections for these effects, whose expression by means of 
a second virial coefficient may be extrapolated above the temperatures at 
which measurements have been made by the use of a Lennard-Jones (12,6)  
potential (see for example Hirschfelder, Curtiss & Bird 1954) are of 
magnitude about 1 / p  or less, if the density p is expressed in gm/cm3. 
We shall not be concerned in this paper with densities at which such a 
correction is appreciable. 

The quantum states to  be enumerated in (3) are combinations of 
translational, rotational, vibrational and electronic states, which can be 
regarded for practical purposes as independent of one another. (Nuclear 
states may be ignored, as any contribution to the partition function due 
to them will cancel in the ratio (Z).) Using indices T,  R, Y and E for the 
four kinds of state, we have therefore 

(4) T E R V  
f A  = f z  f? ; f A ,  = f A ,  fA, f A ,  f A % *  

2.2. Detailed expressions for  partition functions 
The translational partition function f,T is found by replacing the sum (3) 

by an integral over the classical ' phase space ', cells of which of volume h4 
contribute one state each to the sum, as 

where m is the mass of the A atom ; clearly, f a ,  is the same with m replaced 
by 2m. The rotational partition function is similarly found (a factor 4- 
being inserted, however, to allow for the indistinguishability of the atoms) 
to  be 

( 6 )  

where I is the moment of inertia of the A, molecule. Equation ( 6 )  defines 
a ' characteristic temperature for rotation', T,. The summand in (3) varies 
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gradually enough for the sum to be replaced by an integral as in (6) provided 
that T 9 T,.. For O,, T, = 2.07" K, and for N,, T,. = 2.86" K, so that 
this requirement is amply satisfied in the present application. 

The lower vibrational states of A, differ in energy from the gound state 
by 0, hv, 2hv, ..., where v is the frequency calculated classically from the 
mass m of the A atom and the curvature of the potential-energy curve at 
equilibrium. The vibrational partition function computed by assuming 
that the arithmetic progression of energy levels continues unchanged to 
infinity is 

where T,  = hv/k,  the characteristic temperature for vibration, is 2230 OK 
for 0, and 3340" K for N,. More accurately, one may calculate f v  from 
the Morse (1929) energy levels of a molecule with dissociation energy D 
as 

but the difference from (7) can be shown to be small when T < D/K, which 
is 59000°K for 0, and 113000°K for N,. (The same condition is amply 
adequate for the absence of any significant interaction between the rotational 
and vibrational degrees of freedom.) 

The electronic partition functi0ns.f: and f:% consist normally of only a 
very few terms, since the higher electronic states are filled to an extent 
negligible from the thermodynamic point of view (although not from the 
spectroscopic). 

if terms of order e-23000/T can be neglected. The values quoted arise from 
the fact that the ground state of oxygen is a triplet, states of weight 5, 3 
and 1 (that is, spectroscopic terms 3P2, 3P1 and 3P0) being energetically 
very close to one another ; while the ground state ("c) of 0, is of weight 3 
and the next state ('A), of weight 2, is not quite negligibly far away. (Note 
that at the temperatures (> 2000°K) at which dissociation of 0, is 
appreciable fg is practically 9.) 

For nitrogen, the electronic partition functions are still simpler, and 

For oxygen, we may take 

, jZz = 3 + 2e-113001~, (9) f g  = 5 + 3e-2WT + e--327/T 

f :  = 4, f 5 ,  = 1, (10) 
if terms of order e-2s000~T can be neglected, 

Note that all the characteristic temperatures which have been quoted 
are known with considerable accuracy from absorption and emission spectra 
associated with transitions between the various states of the atom or molecule. 
Numerical values used here are all taken from Fowler & Guggenheim (1939) 
and Gaydon (1953). The only value which has been controversial until 
recently is the dissociation energy of N,, but the value used (9.76eV per 
molecule) is now firmly established. 
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2.3. Equations of equilibrium in a hydrodynamically convenient form 

in terms of the density, namely 
For hydrodynamical calculations it is convenient to express the results 

Oxygen 
Nitrogen 

and the proportion by mass of A atoms in the mixture, namely 

(12) 
Z A  a =  

nA + 2nA2 * 

Then equation ( 2 ) ,  with all the results of equations (4) to (10) substituted 
in it, becomes 

m n; - -  - - a2 

1 - a 2n,in,  + 2n,J 2P n,* 

T,! (" K) p,, (gm/cm3) when T (" K) is 
1000 2000 3000 4000 5000 6000 7000 

59000 145 170 166 156 144 133 123 
113000 113 135 136 133 128 123 118 

Table 1 

Table 1 gives T,, and also pcz as a function of T ,  for both oxygen and 
nitrogen. It will be seen that the variation of pd over the large temperature 
range from 1000" to 7000" is very slight for both gases, especially when 
compared with the enormous variation of c T d l T  in this range, and for 
practical purposes the useful simplification of regarding pd as a constant 
(say, 150 for oxygen and 130 for nitrogen) should lead to negligible errors. 
This approximation will be made throughout what follows. 

The rather close agreement between the values of pd for the two gases 
is due to an accidental cancelling: the abundance of rotational and 
vibrational states in 0, as compared with N, would make pd substantially 
smaller for oxygen than for nitrogen, were it not that the abundance of 
electronic (and, to a minor extent, of translational) states in 0 as compared 
with N works the other way. 

Now, for atmospheric values of the density p, pd/p is at least lo5. This 
consequence of the far greater number of translational states available to 
the gas as A than as A, at these densities explains why dissociation first 
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sets in at temperatures rather small compared with the characteristic 
temperature Td. Thus, for p,/p = 105, (13) shows that a is already 0.05 
(50/, dissociation) when TIT, = 0.057, and a is 0.95 (95% dissociation) 
when TIT, = 0.116. For densities typical of the upper atmosphere, with 
(say) pdIp = loT, these values of TIT, would be reduced to 0.045 and 0.076 
respectively. Figure 1 is a diagram in which by use of a reciprocal tem- 
perature scale it has been made easy to read off the degree of dissociation 
a for any values of TIT,, and PIP,,. 

5 
1.0 

a 

0.8 

- 

- 

0.6 - 

04 - 

l.o r 

O l  
0,035 

\ P 1 

Figure 1. Plain lines give (y. (the proportion by mass of free atoms in an ideal 
dissociating gas) against TIT, for log,,(p,/p) = 7, 6, 5 .  The diagram is 
such that linear interpolation with respect to log,,(p,/p) at any horizontal 
level is accurate. For 
nitrogen, p a  = 130 gm/cm3 and T ,  = 106000" K. Broken lines are lines 
of constant ilu,, the enthalpy divided by the heat of dissociation. For these, 
linear interpolation in the vertical direction is almost accurate. 

For oxygen, p a  = 150 gm/cm3 and T ,  = 59000" K. 

We shall need also the equation of state of the gas mixture. The pressurep 
is equal to the volume density of translational momentum transfer in a 
given direction per unit time, which occurs at an average rate k T  per atom 
or molecule, giving 

I 

Here k/2m is often written as R ;  it is the gas constant per gram of A,. 
(Multiplied by 1 +a,  it is the gas constant per gram of A and A, mixed 
in the proportions a : (1 - a )  by mass.) It may be more convenient here 
to  introduce a characteristic pressure for dissociation, 

in terms of which (14) becomes 

Values of p ,  are given in table 3 below. 
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We need also an expression for the internal energy as a function of 
temperature and composition. This is obtained from the partition functions 
of Q 2.2. The total internal energy U in volume V is 

Coefficient} of llA 

I- Coefficient 
of 2nA2 

since the average energy per A atom is 

T ( " K )  1000 2000 3000 4000 5000 6000 7000 

Oxygen 1.60 1.55 1.54 1.53 1.52 1.52 1.51 
Nitrogen 1.50 1.50 1-50 1.50 1.50 1.50 1.50 

1.38 1.54 1.62 1.68 1.72 1.75 1.77 
1.31 1-44 1.52 1-57 1.60 1.62 1-64 Nitrogen Oxygen 

Table 2 

practice they are swamped by the term involving the large dissociation 
energy D. It 
gives for the energy per unit mass u, commonly used in hydrodynamics, 
the expression 

Accordingly (19) will be used throughout what follows. 

U 3k D 
pV 2m 2m 

U = - = - - - T + - K .  

In  terms of a characteristic energy per unit mass 
D 

Ud = - 2m 
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(the dissociation energy per gram of Az), equation (20) becomes 

p ,  (atmospheres) U, (k caligm) 

Oxygen 2.3 x lo7 3.67 
Nitrogen 4.1 x 107 8.02 

U T _ -  - 3- +cr. 
Ud T d  

u, (cmz/secz) v d  = ~ 2 ' ~  (kmisec) 

1 . 5 3  x 101' 3.9 
3-35 X 1011 5 4 

Here, uil' ( = vd, say) is a characteristic velocity €or dissociation ; fluid 
with this velocity has enough kinetic energy to provide half the energy 
required to dissociate it completely. so that p d  

is typical of the pressures obtained by stopping a flow at velocity vd and 
density pa. It  exceeds the pressures which will be found in a real flow 
with velocity cud, by the same large factor by which pa exceeds the real 
density p. 

Note also that p d  = 

2.4. Summary of thermodynamics of an ideal dissociating gas 
We shall use the expression ' ideal dissociating gas ' to denote a gas for 

which equations (13),  (16) and (22) hold with pa (and hence also p d )  replaced 
by a constant. For calculations concerning changes in such a gas between 
different states of equilibrium, it may be convenient to use T,, pa, p ,  and Ud 

as the units, respectively, of temperature, density, pressure and specific 
internal energy (in a flow problem this implies using uL12= vd as the unit 
of velocity). In these units the fundamental equations (13), (16) and (22) 
take the simple forms 

(23)  - -  U2 &IT, p = p T ( l + g ) ,  u = 3T+a.  
1-or - ($1 

The specific enthalpy, which plays an important part in steady flow 
problems, has the value 

(24) i = U+ P - = ( 4 + ~ t ) T + ~ t  
P 

when measured with ud as unit. Curves of constant i are included in 
figure 1,  so that the enthalpy required to produce a given degree of 
dissociation at a given density can be read off conveniently. 

The specific entropy S will also be needed. I t  is obtained most simply 
from the relation 

du+pd(p-l) - 3dT+du+pT( l+  a)d(p-l) 
- 

T T d S  = 

3dT 1-cr ( l+a)dp - - -  +log-dcr- 
P orz P 
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Hence, by integration, 

S = 3logT+~((1-2loga)-(1-a)log(l-cc)-(1+cc)logp+const. (26) 

The  value of the constant can be found from the detailed expressions for 
the partition functions, but will not be needed in the present paper, since 
no chemical changes other than dissociation and reassociation are considered. 
Whenever numerical values of S are given, the constant in (26) has simply 
been taken as zero. Note that the unit in which S is measured in (26) is 
u,JTd = k/2m, simply the gas constant per gram of A,. 

The  properties of the ideal dissociating gas may be conveniently 
summarized in a classical enthalpy-entropy diagram (Mollier diagram) 
such as figure 2, which shows the lines of constant temperature, pressure, 
density and composition in the region of the diagram corresponding to 
pressures between (3 x 10-9) and (3 x times the characteristic pressure. 
These were obtained by selecting pairs of values of cx and p, determining T 
from (23) and then i and S from (24) and (26), and also by selecting pairs 
of values of p ,  T,  determining cc as (1 +pT-lexp T-l)-lj2 and using (23), 
(24) and (26) to obtain i and S as before. Note how the enthalpy on the 
isothermals rises as the gas dissociates with decreasing pressure. This 
sloping up  of the isothermals causes the isobars to be unusually straight 
in the region of dissociation, since the slope dildS = T of an isobar varies 
only slowly along it. The  lines of constant density show a similar behaviour. 

1 5 4 -  

1 25 - 

r ao- 

0 75-  

Figure 2. Enthalpy-entropy diagram for ideal dissociating gas (units as in 5 2.4). 

It is outside the scope of this paper to consider the behaviour of 
dissociating gases in internal aerodynamics, and therefore the ' Fanno ' 
lines representing flow in ducts of constant area have not been included 
in figure 2, though they could easily be obtained. One may remark, however, 
that the properties exhibited in figure 2 m.ake a dissociating gas an attractive 
possibility for heat engines. Thus, a closed-cycle gas turbine operating in 
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a large temperature range, which may be desirable for utilizing the energy 
output of a nuclear reactor, may in principle reach a high thermal efficiency 
with a gas in which the temperature increases so slowly along the isobars. 
At the sort of temperatures that could be conveniently dealt with, a gas 
like I, with TrE = 18000°K might be suitable. By operating up to 0.08 
or 0.09 of this characteristic temperature one might achieve the favourable 
general shape of the steam-turbine cycle with a temperature range many 
times as great. 

Note that, as u + 0 at low temperatures, the ideal dissociating gas 
becomes a perfect gas with constant specific heats, in the ratio y = cp/c ,  = g. 
(Physically, this is because the vibrational degrees of freedom are taken to 
be half-excited even at low temperatures.) It might be thought desirable 
for the ideal dissociating gas to have y -> 8 at low temperatures, but, since 
projectiles travelling at speeds like those mentioned in 4 1 cannot in practice 
have their surface kept below 1000"K, is a reasonably realistic low- 
temperature limit for y in the field of flow around such a projectile. 

3. EQUILIBRIUM FLOW THEORY FOR AN IDEAL DISSOCIATING GAS 

3.1. Requirements fo r  equilibrium flow 

We consider now the flow of the ideal dissociating gas of $ 2  under 
conditions in which to a good approximation an equilibrium state is 
maintained at all points. This means (i) that the state of each portion of 
fluid changes slowly compared with the relaxation frequencies of all the 
processes involved in maintaining equilibrium, and (ii) that there is no 
transport of momentum or heat, or significant interdiffusion of atoms and 
molecules, across surfaces moving with the mass velocity of the fluid. 
( In  Part I1 we shall consider flows in which restriction (ii) is removed but (i) 
is retained, and in Part 111 flows in which both are removed.) 

It is well known that the equations governing such reversibly-adiabatic 
gas motions do not always possess continuous solutions, but that solutions 
involving where necessary a discontinuity or ' shock wave ', across which 
irreversible changes of state occur but mass, momentum and energy are 
conserved, can always be set up, and these correspond well with what is 
observed. Energy dissipation occurs within shock waves, but the time spent 
by any fluid particles within the region of dissipation is not great compared 
with the relaxation times just mentioned (except for very weak shock waves 
indeed), and, whenever the distance travelled d ~ r i n g  such a time is small 
compared with the basic length scales of the flow, the solutions which 
treat the shock wave as a discontinuity are useful. These solutions are 
considered in this section as well as the continuous ones. Indeed, since the 
first change experienced by the air as a supersonic projectile approaches 
is passage through a shock wave, the conditions governing this change will 
be studied first. 
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3.2. Conditions behind a shock wave 
In  a frame of reference in which the shock wave is stationary, the 

Rankine-Hugoniot equations of conservation of mass, momentum and 
energy across it are 

PoVno = P l V n l ,  (27)  
V f O  = Vtl, (28) 

(29) 

(30) 

2 Po + Po VRo = P l  + P 1 Vnl ,  

io + &v:, = i1 + &Zl, 
where suffix 0 denotes conditions ahead of the shock, suffix 1 conditions 
behind it, and v,? and v, denote velocity components normal and tangential 
to it. 

With atmospheric temperatures ahead of the shock, dissociation can be 
appreciable only if v,~,  is large-so large, in fact, that the terms p ,  in (29) 
and i, in (30) can be neglected. Thus, figures 1 and 2 show that dissociation 
is not very important unless i1 > 0.25, so that by (30) io + $vz, > 0.25. 
But io < 0.02 if the temperature To ahead of the shock is less than 0.006 
(this fraction of Td is 350" K for oxygen and 640" K for nitrogen), so that 
in this case io is already small compared with +v:, for the rather small 
amount of dissociation implied by the selected value of il, and becomes 
quite negligible for larger amounts. The ratio of p ,  to Po vi0 is still smaller. 

Accordingly, the ' strong-shock approximation ' of neglecting i, and Po 
will here be made, and (27), (29) and (30) written as 

(31) 1 2  _ .  P 0 v,o = P1 v m  Po 4 0  = P, + P 1 V z l ,  2VmO - 21 + M l .  

It follows from (31) by elimination of wno and zlnl that the density-ratio at 
the shock wave is 

where K is one plus the ratio of the total internal energy of the gas to the 
energy.of the translational motion in any one particular direction. Figure 3 
gives graphs of 

as a function of a for different values of log,,( l/pl) ; since interpolation 
with respect to loglo(l/pJ is linear for fixed a (that is, at any horizontal 
level), only two curves have been drawn. 

In  terms of K,  the pressure and enthalpy behind the shock are given 
by (31) as 

Note that over 98% of the kinetic energy of the fluid approaching the shock 
wave is converted directly into enthalpy by it. 
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To determine conditions behind a shock wave given the density and 
velocity ahead of it, one may first use (34) to give i1 correct to 1 or 2%. 
Assuming a rough value of K of say 10 or 12, one then determines 
from figure 1 the value of u corresponding to the enthalpy i, and to a 
density Kpo, and hence from figure 3 (using this M and the same value for 
the density) an improved approximation to K. If the first guess of K was 
badly out the process may then be repeated to improve the approximation, 
but otherwise this is unnecessary. 

For example, if in the units here used vn0 = 1.2 and po = 2 x lo-’, then 
i, = 0.72 and, to a rough approximation (taking K = 12), p1 = 2.4 x 
and loglo(l/pJ = 5.62. From figure 1 for these values 0: = 0.42, whence 
from figure 3 to a better approximation K = 13.2, giving p1 = 2.64 x 
and log,,( l/pl) = 5-58. If this new value is used instead of 5.62, the values 
obtained for u and K are unchanged in the last figure quoted. 

Figure 3. Density-ratio K at a shock wave, as a function of p1 and ci, the density 
Linear interpolation with respect to 

Although we shall not use them in this paper, it is valuable in more 
accurate calculations to have available the second approximation to the 
shock wave equations (32) and (34). This takes into account the terms p ,  
and io in (29) and (30) but neglects their squares. If the gas ahead of the 
shock is taken as an ideal diatomic gas with velocity of sound a, = 1/(7p0/5p0), 
then these second approximations are 

and degree of dissociation behind it. 
loglo(p,/pl) at any horizontal level is accurate. 

1 5(K2-7K+1) a: 1 P = I - - - +  - S(6K-1) af 
7 (K-  1) v;() Po 7 4 0  K 7K(K-1) ~ 2 , o ’  

!?A = K(1- 
Po 

4 1 - -  1 2  - 1 - - + 5  1- 
2Vmo K2 { 7K2(K-1) 

The effects on p1 and il are appreciable (around 5% even for vJao = 10) 
but that on p ,  is very small (less than 0.4% under the same condition). 
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3.3. Eflects of non-uniformity of shock w a v e  strength 
Any projectile travelling at speed V must have a shock wave ahead of i t  

which is normal to the direction of motion at one point at least (since an 
ideally sharp apex or edge in front of the projectile could not be used in  
practice). At this point urL0 = V and hence il is very nearly +V2. It follows 
from figure 1 that about 5% dissociation will occur behind this point on 
the shock wave when V = 0.7, 25% when V = 1.0, 50% when V = 1.3, 
75% when V = 1.5 and 95% when V = 1.6, the unit for V being of 
course v,~.  These are only rough values; the variation with density of 
the dissociation produced can be seen from the figure. 

At other points on the shock wave, where it is inclined at an angle 7 
to  the direction of motion, vtLo = Vsin?, and the enthalpy behind the shock 
wave is reduced. Thus, there is less energy dissipation in these weaker 
portions of shock wave, where accordingly the entropy increase is less. 
T h e  entropy gradient behind the shock wave is easily inferred from (34). 
If dS, is the difference in entropy behind elements of shock wave with a 
difference ~ c u , , ~  in upstream normal velocity, then 

T ,  dS, = di,- 1 
P1 
- dP1 

the terms due to the variability of K cancelling out. 
This variation of entropy behind the shock leads to the presence of 

vorticity. At a point P where the two ' principal curvatures ' of the shock 
surface are K~~ and K,, (with curvatures taken positive when they are convex to  
the oncoming flow), let suffix a signify components parallel to the line of 
curvature through P which has curvature K ( ~ ,  and suffix b similarly. Then  
at a point on the shock surface near P, whose separation from P has 
components ax,,, 8xh, the velocities differ from those at  P by the amounts 

8utLo = - 'u, KCt - Zib K b  8xh, 8v, = V,,O K, axu, 8vb = v,o Kb ax,. (36) 

But the equation of momentum in the continuous flow behind the shock 
wave may be written in terms of the vorticity w = curl v as 

where the first two terms are a familiar form of the acceleration of a fluid 
element in steady flow. This, combined with the energy equation 

+v2 + i = constant, (38) 

(39) 
gives 1 

O A V  = Vi- - Vp = TVS. 
P 
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Now by (36)  the vorticity component normal to the shock surface vanishes ; 
thus 

av, av, 
w,= --- = 0 .  ax,  ax, 

Hence, resolving (39) in the a and b directions (assumed such that the a, b 
and n directions form a right-handed system), 

From (41), (35), (36) and (27), 

and, similarly, 

Thus, the vorticity 

(43 ) 

component in either of the two principal directions of 
curvature of the shock surface is equal to the curvature i n  the direction at  
right angles, times the tangential velocity component, also in that direction, 
times a factor ( K -  1)2/K, which for a dissociating gas is rather large 
(figure 3). 

Results like this are usually stated for two-dimensional or axisymmetrical 
flow; these cases are simpler because the velocity component in one of 
the two principal directions of curvature vanishes. I t  may be useful, 
however, to have a more general type of result on record. Equations (42) 
and (43) are also completely general with respect to the thermodynamic 
properties of the gas ; only the ' strong-shock ' approximation has been 
used in deriving them. 

3.4. Properties of isentropic changes 
In  the type of flow described in 5 3.1,  fluid particles undergo isentropic 

changes as they move along streamlines behind the front shock wave (at 
least, until they encounter another shock wave), although the entropy S 
has different values on different streamlines. The  character of the flow 
changes when the fluid speed exceeds the local speed of sound, whose 
square is equal to the derivative of pressure with respect to  density at  
constant entropy, even when propagation occurs in a region of varying 
entropy. Both these facts make it necessary to study isentropic changes 
in detail. 

The  general character of these changes can be seen from figure 2, two 
points being particularly worthy of notice. The  change in i for a given 
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change in pressure is smaller than in most gases. 
entropy 

In fact, at constant 

(44) 
d l o g i  pdi  p 2 - = - - = - =  - 
dIogp i dp ip K + l  ' 

I n  the region of dissociation this is of the order of +, only half of its value 
for an ideal diatomic gas. Hence changes in enthalpy, and so also of the 
fluid speed 

with changes in pressure, are reduced when dissociation or reassociation 
is occurring. This is because the translational energy of the molecules is 
a reduced fraction of the total enthalpy. 

Again, the change in logp with logp at constant entropy is slower for 
intermediate M than for either an ideal diatomic gas or a gas with constant 
adiabatic index 2 (the limit of our ideal gas as M --f 0), or a monatomic gas 
(a + 1). 

21 = 2/( v2 - 2i),  (45) 

I n  fact the adiabatic index 
dlogp a2 

y = - = -  
dlog P PIP ' 

from which the speed of sound a can be inferred, falls to around 1.2 in the 
region of dissociation. For by putting dS = 0 in (25),  and using (23)  with 
p expressed in terms of T and u: we can show that 

2+3a2-G' T 2  

(47) 
2T+ u ( 1 - 2 )  

I +  M i  
T2 

= 3(2-cc) 

From table 4, which gives y -  1 for different values of M ,  it is clear that, 
for the values of T of interest here (say, between 0.04 and 0.10), ( y -  1) 
falls well below both its extreme values for all the intermediate values 
of M which are quoted. 

a 

Y -1 

ci 

Y -1 

~ ~~ 

0 0.1 0.2 0.3 0 -4 0 . 5  

- 1 2Tj20.5T2 2T+llT2 2T+8.2T2 2T+7.2T2 2T+7*OT2 
3 1463.3T2 1+33.7T2 l+24.3T2 1 +20T2 1-182'2 

0.6 0.7 0.8 0.9 1 .o 
2T77.5T2 2T-tS.8T2 2T+ 1 1  '8TZ 2T+ 21 .6T2 2 
lt17.5T' 1-18.6T2 1+22.5T2 1+36.7T2 , 3  

Table 4 

This behaviour of y is not unrelated to  the behaviour of K shown in 
figure 3. I n  fact, it follows from (44) that in a change at constant entropy, 

dlogp K + l  dlogp-dlogi  K + l  dlogp-dlog($K+$) =- 
' = d l o g p = K - l  dlogp K -  1 dlog P 

9 (48) 
- K+ 1 - dK/dlogp 
- 

K-1 
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which may be compared with the relationship y = ( K +  l ) / (K- 1) for a 
gas with constant specific heats. T h e  actual expression for the 
isentropic derivative dK/dlogp is algebraically complkated but it can 
be seen from figures 2 and 3 to be numerically small for cc < 0.9, so that 
the fall of y to a minimum for intermediate cc proceeds in parallel with the 
rise of K to a maximum for these cc. 

T h e  square of the local Mach number immediately behind a shock wave, 
by (46) and (34)) is 

(49) 
- 1 + K2cot2q 4 -- + $1 - (vL/K2) + %I- - 

Y P I l P l  241 - K-%o %o/KPo y(K-  1) ’ 
since ZI,~ = VsinT and qo = Vcosv. For a dissociating gas, then, this 
number is small (around 0.07) behind the normal part of the shock wave 
(where q = &r) but rises to unity where 

which for y = 1.2 and K = 12 (say) is 73.8”. Although the sonic line 
starts on a portion of shock wave inclined rather steeply to the flow, where 
the pressure is 

K 
K + y +  lPoV2’ 

it ends at a point farther round the body, where the pressure (estimated 
from (44) by taking K constant) is about 

-(6 +1)12 
(1- &){(l- &)(I+ &)I PoV2* 

For y = 1.2 and K = 12, the pressure (51) is 0 . 8 4 5 ~ ~  V 2  and the pressure (52) 
is 0.540p0 V2.  

3 .5 .  Flow about blufJ bodies: approximations of Newtonian type 
The  aerodynamic problems we shall consider will be concerned mostly 

with flow about bluff bodies (with the sphere as the typical body), partly 
because it seems clear that the flow about a projectile must at least start 
by negotiating a more or less bluff nose. 

T h e  theories of flows about bluff bodies at very high Mach number 
which are mentioned in the literature have been related by most authors 
in a somewhat far-fetched manner to a discussion by Newton (1687). 
Having no empirically-based knowledge of gaseous structure, Newton 
postulated a gas which we should now describe as having negligible thermal 
motions and very large mean free path and whose molecules collide 
inelastically with a solid surface. This gives a surface pressure of 
po V2sin2x, where x is the angle between the surface and the direction 
of motion ; all the momentum flux normal to a surface element is communi- 
cated directly to the surface. The  reflection condition is satisfied if particles 
hitting the surface are adsorbed and later evaporate at the temperature of 

F.M. B 
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the surface with energy small compared with V 2  sin2X. Cooled bodies may 
therefore satisfy the Newtonian assumptions at Mach numbers so large 
that thermal motions in the undisturbed atmosphere are negligible, but 
only if the density is so small that the mean free path is comparable with 
the body size. The  last restriction is a severe one, and applies only at 
extreme altitudes, where the drag and heat transfer are not very important. 

In  the more interesting class of flows in which the mean free path is 
small compared with the size of the body, no plausible reason why the 
Newtonian rarefied-gas formula might be applicable has ever been advanced, 
but the prestige of Newton's name has been regarded by some scientists 
as an adequate substitute for a theory. (Newton actually gave a different 
argument, and a different answer, for denser fluids ; although these were 
incompatible with our present knowledge of the mechanics of fluids, it is 
significant that he did not himself expect the rarefied-gas formula to be 
applicable.) 

At the front stagnation point the pressure is equal to the stagnation 
pressure appropriate to the conditions behind the normal part of the shock 
T o  a good approximation, by (49), the flow here may be regarded as 
incompressible, and so, by (34) with zin0 = V ,  this stagnation pressure is 

a value only slightly below the ' Newtonian' value po V2. 
suggests an empirical law 

Lees (1955) 

p = 1 - - po V2sin2X ( 23 (54) 

for the surface pressure distribution, in which the Newtonian formula is 
multiplied by a constant factor to make it accurate at the stagnation point, 
and in this way obtains good agreement with experimental pressure distri- 
butions on spheres, and cones of 40" semi-angle with spherical tips, in air 
flows at M = 5-8, as observed by Oliver (1956). Such a formula could 
reasonably be used for extrapolation to when dissociation is present only 
if it had some plausible theoretical basis. This  seems to  be wanting. One 
can hardly regard the flow normal to a surface element (with velocity 
Vsin x) as independent of the flow tangential to it, which completely alters 
the streamline pattern on which the calculation of pressure recovery in (53) 
is based. as well as introducing important centrifugal pressure gradients. 

A quite different approach was set out in a paper by Ivey, Klunker 8i 
Bowen (1948) and anticipated in a brief discussion by Busemann (1933). 
The  approach has been used and further discussed by Grimminger, 
Williams & Young (1950), who call it ' the hypersonic approximation', 
and by Van Dyke (1954), who calls it the ' Newtonian-plus-centrifugal ' 
theory. More recently, Chester (1956) and Freeman (1956) have both 
reconsidered the approach and pushed it to a second approximation. 



Dynamics of a dissociating gas 19 

This approach first assumes the Mach number so great that the strong- 
shock approximation can be used (as we did already in $3.2) and then 
approximates further by taking K large. This may be regarded as beginning 
an expansion in inverse powers of K, or (speaking more accurately) a 
successive-approximation procedure in which the first approximation is 
the solution with K = co. Since K,  as we have seen, is large for a 
dissociating gas, such a procedure is particularly attractive when dissociation 
occurs. But, as we shall see, it leads to difficulties for certain body shapes, 
principally due to uncertainty about the nature of the limiting flow for 

Since for K = 03 the density behind the shock wave is an infinite multiple 
of the density ahead of it, while the velocity component tangential to the 
shock wave is unchanged, the streamtube area might be expected to become 
zero on passage through the oblique parts of the shock wave. In this case 
the shock wave would be wrapped round the body, and all the flow between 
the shock wave and the body would be compressed into a layer of negligible 
thickness. (Note that here viscosity and allied effects are neglected; their 
importance can be gauged better when a second approximation has 
yielded an estimate of the thickness of this ' compressed-air cap '.) 

Now, since by (34) for K = co the pressure immediately behind a shock 
wave is po VZsin27, while, if the shock wave is wrapped closely round the 
body, 7 = x at any point, it might be thought that the ' Newtonian ' pressure 
distribution po V2sin2x would be recovered in the limit as K -+ co. This 
neglects, however, the centrifugal pressure change across the layer, in which 
a large mass-flow moves with large velocity along streamlines with curvature 
equal to that of the body. The true surface pressure for K =  co is 
accordingly less than the Newtonian value. This calculation is briefly 
illustrated for a body of revolution in axisymmetric flow in $3.6 (see 
Grimminger, Williams & Young (1950) for a more general discussion) ; 
some further details found by Freeman (1956) for this case are also described. 

K =  a. 

3.6. Higher approximations : summary of Freeman's analysis for bodies of 

If r signifies distance from the axis of symmetry, and ( x , y )  are the 
usual boundary-layer coordinates (x = distance along meridian section of 
surface, y = distance normal to surface), and the relationship between Y 

and x on the surface is r = R(x) ,  and t,b is a Stokes stream function, whose 
value at each point is (277)-l times the mass flow across a disc (coaxial with 
the body) with the point on its rim, then in the uniform flow upstream of 
the shock wave t,b = i p ,  Vr2, and so on the shock wave (which coincides 
with the body surface for K = co) t,b = $po VR2(x) .  The angle x(x)  between 
the tangent plane and the axis is sin-lR'(x). But the equation of momentum 
normal to the surface gives 

revolution 

B 2  
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since -dx/dx is the curvature of the streamlines and since a+/ay = par. 
Here, inertia of flow normal to the surface is neglected, because the flow 
becomes purely tangential as K --f m. But the pressure at the shock wave 
was shown to be po V2sin2X(x); hence, the pressure at an arbitrary point 
behind it (that is, for any value of t,b < $po VR2(x)) is 

The surface pressure is obtained from (56) by putting I# = 0. 
One still has the problem of selecting the value of v as a function of + 

for given x to be put in the integral. Here the properties of isentropic flow 
along streamlines are used. The streamline specified by + passed through 
the shock wave at the point x = xl, say, where + = $po VR2(xl). At this 
point, by (34) with K = co, i = $Vzsin2X(xl). Now, equation (44) shows 
that as K -+ co the change in i with changes in p becomes negligibly slow, 
so that in this limit we may take 

v = 2/(VZ222i) = VcOsx(xl) (57) 
all along the streamline in question. 
integration changed from 

Then (56), with its variable of 
to xl, becomes 

R(xl) R'(x,)cos x(xl) dxl}, (58) 

whence the surface pressure in the form given by Ivey, Klunker & Bowen 
(1948) is derived by putting x1 = 0. 

The approximations involved in this formula are as follows. 
(i) The shock wave angle 7 has been taken equal to the body surface 

angle x, although for convex bodies 7 > x. 
(ii) The streamline curvature has been taken equal to that of the 

body, although it will be less for convex bodies. 
(iii) The increase in velocity along a streamline as the pressure falls 

has been neglected. 
(iv) The terms in 1/K and 1/K2 in the shock equations (34) have 

been neglected. 
(v) The pressure gradient normal to the wall has been taken equal 

to the (centrifugal) pressure gradient normal to the streamlines, 
although since the streamlines are not exactly parallel to the wall 
it must contain a component of the streamwise pressure gradient 
as well. 

Of these, approximations (i) and (ii) tend to underestimate the surface 
pressure, and (iii) and (iv) to overestimate it. Approximation (v) can work 
either way, but is probably the least important of the five. Since the 
experiments of Oliver (1956), although performed at Mach numbers at 
which the strong-shock approximation is in error by 150/& and under 
conditions in which air behaves like an ideal diatomic gas, with K = 6 
(obviously too low a value for the approximations to be good), give surface 
pressures consistently greater than equation (58) predicts, and in fact 
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close to Lees's equation (54), we may infer that approximations (i) and (ii) 
are more seriously in error than (iii) and (iv). Probably the order of 
importance of the errors involved in the different approximations is that 
given in the list. 

Attempts have sometimes been made (e.g. by Grimminger et al. 1950). 
to produce better agreement with experiment by choosing a different 
relation between z1 and t+5 to insert in (56),  but this clearly requires v to 
decrease along streamlines, although the pressure is falling. Viscous action 
could explain this, but hardly at the Reynolds numbers of the experiments. 
Probably approximations (i) and (ii) are a much more important source of 
error at fairly low values of K. All the sources of error will, however, 
decrease as K becomes greater. 

In addition to the experimental disagreement, the theory contains 
within itself signs of its own limitations. For certain shapes, the surface 
pressure falls to zero for some x. Thus, for a sphere of radius a, 
R(x) = asin(x/a) and x(x) = &r-xx/a and the surface pressure given by 
(58) is p = po P ( 1 -  +sinz(x/a)), ' (59) 
which vanishes at x/a = i n ,  that is, at 60" from the front stagnation point. 
Ivey, Klunker & Bowen (1948) suggest that the flow separates from the 
surface at this point, leaving a dead-air region near the surface in which the 
pressure coefficient is negligible. They calculate the drag of a sphere on 
this basis as two-thirds of the ' Newtonian ' value. 

The present author does not believe that the flow separates from the 
surface at this point, even for very large K,  but rather that the shock wave 
separates from the surface there. The assumption of very small streamtube 
area then breaks down, because in hypersonic flow enormous increases in 
streamtube area are possible when the pressure has fallen by a large factor 
(and it must ultimately fall to at least its upstream value). The whole 
approximation thus becomes non-uniformly valid as the point of shock 
wave separation is approached. 

This hypothesis is borne out by the behaviour of the second approxi- 
mation (Freeman 1956) to the Ivey, Klunker & Bowen theory. Freeman 
first finds y as a function of x along each streamline + = constant by 
integrating 

in which he takes z1 as given by (57), and, since y is so near 1 for K large 

withp given by (58). Here, K(xl) stands for the value of K at a shock whose 
angle of inclination to the oncoming flow is x(xl). Hence, the equation of 
the streamline is 
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where x1 as before is the position where the streamline passes through the 
shock wave. Note that the distance of the streamline from the surface is 
of order K-l; however, where the pressure p begins to be small, the 
coefficient of K-l starts to increase rapidly. 

The  integral (62) converges at its lower limit because R(xl) tends to 0 
as well as cos x(xl) as x1 -+ 0. Otherwise (as happens in the corresponding 
theory (Chester 1956, Freeman 1956) for two-dimensional flow) one would 
have to use a better approximation to than (57) for small x1 (i.e. very 
near the body). 

Freeman next obtains the equation y =y, (x)  of the shock wave, by 
simply replacing the upper limit in (62) by x, so that it becomes the value 
of y for the streamline which passes through the shock wave at the point x 
itself. This expression again is of order K-l but becomes large as the 
point of shock separation is approached. As x + 0, on the other hand, it 
is easy to show that 

ys(x) + a/K, (63 ) 

where K = K(0) stands for its value at the normal part of the shock wave 
and a is the radius of curvature of the body at the nose. (It is interesting 
that this stand-off distance of the shock wave ahead of the body is exactly 
twice the value obtained by the very crude approximation of assumihg 
irrotational flow behind the shock wave. Equation (63) is closer to the 
experimental results. A more accurate value than either will be found 
in $3.9). Strictly, the assumptions of the theory break down near the 
stagnation point, since the fl6w velocities are not even approximately 
tangential there, but Freeman (1956) is able to take approximate account 
of the normal components of velocity in this region, and to show that they 
do  not affect the equation y = ys(x) of the shock wave to the approximation 
used. This analysis shows also that in this region, for K large, the tangential 
velocity component zi, falls linearly with y from its value V,/u on the shock 
wave to zero on the body, a striking result which would restrict greatly the 
importance of viscosity if it were true, and which also will be critically 
evaluated in 3 3.9. 

H e  then goes on to obtain the surface pressure distribution to a second 
approximation, in which all the effects numbered (i) to (v) above are taken 
into account, by use of the shock shape and streamline shapes which have 
just been obtained, and an increase of velocity along a streamline which 
corresponds to the pressure fall as calculated on the first approximation. 
T o  the second approximation thus obtained, the pressure starts at the 
correct stagnation-point value (53), which is below the first approximation, 
and for a sphere (for which numerical details are obtained) begins to rise 
above the first approximation for 8 > ZOO, and has already diverged very 
greatly from its first approximation when 8 = 45". 

It is clear from this that the whole process diverges near the point of 
shock separation, largely because the assumption of small streamtube area 
behind the shock wave starts to break down when the pressure has fallen 
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by a factor at all comparable with the shock-density ratio K. (The breakdown 
occurs even sooner in two-dimensional flow.) 

Chester (1956) gets similar results to Freeman in a method of successive 
approximation in which the shape of the shock wave is taken as given and 
the shape of the body progressively determined. He uses a perfect gas 
with constant specific heats but pushes the calculations to one degree of 
approximation higher than those of Freeman. 

3.7. Bodies of revolution with shock wave separation at the base 
It must now be noticed that many bodies of revolution terminate in a 

flat base in such a way that no shock wave separation occurs until the base 
is reached-either because the angle x between the surface and the stream 
remains fairly large ahead of the base, or because as x falls the curvature 
(- dx/dx),  and with it the centrifugal pressure drop, falls also. 

For example, on a paraboloid of revolution whose equation in cylindrical 
polar coordinates ( r , x )  is r2 = 2az (here, as in $3.6,  a is the radius of 
curvature at the nose), the pressure given by the Ivey, Klunker & Bowen 
formula nowhere falls to zero. For, in cylindrical coordinates, that formula 
( 5  3.6) may be written 

P i' r(dzldy)dr (64) 
d2z/dr2 - 1 

which for the paraboloid is easily evaluated as 

- -  - 
po V2 1 + ( d ~ / d r ) ~  r ( l  + ( d z / d ~ ) ~ ) ~ / ~  ( 1  + (dz/dr)2)1'2 ' 

(65) 
sinh-l(r'a) I p - I{ 1 

- 2 1 +(r/a>2 + (r /a)( l  +(r/a>2)3'2 * 
Note that this is always more than half the simple ' Newtonian ' value. At 
r = a, where x = 45" (and the meridian radius of curvature has increased 
to 2.83a), p /po  V 2  has fallen to 0.406. The approximation is of doubtful 
value at pressures much below this, but there is not the same catastrophic 
failure of the theory as there was near the position on the sphere where the 
first approximation to p vanished. 

Another example easily worked out by equation (64) is the body r3 = 3b2z, 
for which the radius curvature falls from inJinity at the nose to a minimum 
of 1.306 at Y = 0-7076 before rising again as Y increases further (for example, 
it is 1.41b when Y = b and x = 45"). The surface pressure distribution is 

P 1 
- =  
po V2 { 1 + (r/b)4}3'2 ' 

giving p/po V 2  = 0.354 when r = b.  Note that the pressure where x = 45" 
is lower in this case than for the paraboloid, whose radius of curvature 
relative to the local value of r is twice as great at that point. The pressure 
at x = 45" on a sphere is lower than either (p/po V2 = 0.333), although the 
ratio of the local radius of curvature to r has the same value 42 as for the 
cubic shape. This is because the flow velocities at x = 45" are smaller for 
the cubic shape, for which less of the fluid has passed through the more 
oblique parts of the shock. 
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For most other shapes, numerical integration is necessary in (64). One 
can get useful analytical expressions, however, for the purpose of seeing 
quickly how various kinds of variation of shape affect the pressure distri- 
bution, by studying bodies in which cosx is a simple function of r ,  using 
the form 

of the Ivey, Klunker & Bowen formula. The general shape of the body 
is fairly obvious from the form of cos x as a function of Y ,  and can be computed 
quickly from the formula dzldr = cot x. 

One may use (67), for example, to discuss different ways of rounding 
the nose of a cone of given semi-angle xo. On the cone itself $/Po v2 will 
be sin2Xo. If a spherical .nose is used the pressure just before the conical 
part will be 1 - 4 cos2xo to the first approximation. The sudden rise in 
pressure as the conical part is reached, although it will doubtless be smoothed 
out and reduced in magnitude a bit in the real flow (because the centrifugal 
effect does not cease instantly when the fluid reaches the conical part, and 
because the effect is overestimated in the Ivey, Klunker & Bowen formula), 
may cause undesirable boundary layer behaviour (instability, etc.). With 
a paraboloidal nose the pressure falls instead to 

+(sin2Xo + sin4xo sec xo sinh-lcot xo), 
for example (if xo = 45") to 0.406 instead of 0.333, but the sudden rise to 0.5 
may again be harmful. Instead, one can let the radius of curvature become 
infinite where the nose joins on the cone. Choosing 

which gives x = xo and dx/dr = 0 when r = 2a cos xo, we find from (67) 
that 

(69) 

This is continuous with p/po V 2  = sin2Xo at r = 2acosxO, but falls to a 
minimum of 1 - 1.055 cos2xo at r = 1 . 7 3 5 ~  cos xo, for example to a minimum 
of 0.473 if xo = 45". Thus some slight pressure rise still occurs but it is 
much smaller and more gradual. The need for some pressure rise 
immediately before an accurately conical portion is easily seen by 
differentiating (67). 

Conversely, equation (67) may be inverted, to give the shape of body 
with a given first approximation to the pressure distribution, as 
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(which must be used with dxldr = cot x if the body shape is to be plotted). 
Here p ,  is the pressure (to the first approximation) at the point r = r; on 
the surface. 

For example, if one takes the pressure to be its value on a sphere of 
radius a up to a certain value of r, andthereafter constant and equal to that 
on a cone of semi-angle xo, in other words if 

cosx = rja (r  < a443 cos xo), 1, 

Figure 4. Transition curves from spherical nose to cones of semi-angles 45" and 30". 
Bodies of revolution with these meridian sections would have constant surface 
pressure behind the spherical portion, according to the Ivey, Klunker & Bowen 
formula (67). 
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It is to be noted how rapidly x --f xo as r increases ; the transition from 
sphere to  cone is made fast, although without the pressure dropping below 
its final value. T h e  shape is plotted for x0 = 45" and xo = 30" in figure 4. 
These are probably rather suitable ' transition curves ' from the spherical 
to the conical shape, since the fact that the pressure formula overestimates 
the centrifugal effect can only mean that the tendency to pressure rise, 
already eliminated by the shape chosen, is less marked even than was 
assumed in the calculation. 

3.8. Shape of shock wave beyond where it separates from the body 
Both for bodies from which the shock wave separates at the base, and 

for those from which it is thrown off (as it were) by centrifugal force at a 
point ahead of the base, it is of interest to investigate the shape of the shock 
wave beyond where it separates. The  following rather crude approximate 
treatment of this problem is based, as in $9 3.6 and 3.7, on assuming K large. 

For K = co the shock wave coincides with the body up to the position 
of shock separation, and all the streamlines coincide with both shock and 
body. After shock separation, however, it seems likely that most of the 
streamlines will remain close to the shock rather than to the body, for when 
the shock is oblique the streamtubes passing through it are greatly reduced 
in area and lie closely parallel to it, and, also, all those streamtubes on which 
the pressure has not fallen off greatly from its value at the shock will still 
have a small streamtube area. If the shock has not become too oblique to 
the flow, then most of the mass flow inside it must flow along these stream- 
tubes. T h e  streamtubes nearest the body or wake, however, must have a 
low pressure, either because the wake is at a low ' base ' pressure or because 
a large streamtube expansion in this region is necessary to fill up the growing 
space between the shock wave and the body. This suggests that the shock 
wave has such a shape that the centrifugal pressure drop, across streamlines 
most of which nearly coincide with it, reduces the pressure from its value 
at the shock to practically zero on the other side of those streamlines. This 

0 = po V2sin2r] + - gives 

where x is now a coordinate measured along the shock instead of along the 
body surface, rS(x) is the value of Y at the shock, and the streamline curvature 
has now been taken equal to the shock wave curvature ( - dr]/dx). Because 
r;(x) = sinr], this equation may be written 

r,sinq& + J'rXr,cosq dr,= 0, 
drl 0 

(74) 

an equation which is easily solved after differentiation with respect to r]  as 
dr 70 

rs sin2q 2 = const. = - sin r ] ,  1 rs cos 71 dr,, 4 0 
(75) 
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where suffix zero signifies the position of shock wave separation. (To a 
first approximation, one may take 7 = x and rs = R(x) on the right-hand 
side of (75), since the shock coincides with the body up to separation.) 
Next, integrating (75) again, we obtain 

J 0 

as the relation between q and Y, along the shock. (One may note that this 
is also derivable, less simply, from (70) by putting p ,  = 0 for r1 > Y,, and 
interpreting x as 7.) 

The shock shape in cylindrical polar coordinates (Y, z) is easily deduced 
from (76), because dz,/dr, = cot q. Hence 

showing that the approximate shock shape calculated in this way is a cubic. 
The  errors in this formula are similar to those enumerated after equation 

(58), except that (i) is absent; no error has been made in the shock wave 
angle in equation (73). However, the error in the streamline curvature 
may be more severe in this case. The  streamlines near the body or wake 
are probably considerably more curved than the shock wave, indicating 
that (77) probably overestimates the curvature needed in the shock wave. 
One may hope, however, that their contribution to J ZI dyb is only moderate 
because neither nor the change in $I across those streamlines can be very 
large. At present it does not seem clear how the theory beyond shock 
separation can be extended to a second approximation. However, in cases 
where separation occurs at the base, one may use Freeman's calculation 
of the second approximation to the shock shape up to separation, and take 
x,,, yo, qo in (77) as the coordinates and angle of the shock wave at separation, 
and thus considerably improve the accuracy of (77) beyond separation. 

When separation occurs before the base, the theory is less satisfactory 
because for any finite K a substantial departure of the shock wave from 
the body surface occurs before the theoretical position of separation, and 
Freeman's second approximation is of no value for calculating the later 
stages of this process. In these cases, the first approximation to the shock 
shape is put forward here principally because it might serve as the foundation 
of a future method of successive approximation, based (as is necessary for 
success) on a uniformly valid first approximation. 

Figure 5 shows the shock wave shapes for separation from a spherical 
cap subtending a half-angle at the centre of lo", 20", 30", 40", 50" and 60"; 
for convenience of comparison they are all superimposed on a single figure, 
and the values for K = co only have been plotted. The  first three are 
likely to have more value than the others ; for finite K these may well be 
close to the true shock shape if the body is taken to be a portion of a sphere 
concentric with the spherical part of the shock but of a smaller radius (to 
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be determined in 8 3.9 ; the position of such an inner sphere for K = 15, 
12, 9, 6 is noted on the figure). The last of the shock shapes shown is a 
very crude first approximation, for large K ,  to the shape of the shock wave 
on a complete sphere (which separates from the surface at x = 30"). 

60' 

Figure 5. Shapes of shock waves trailing behind spherical caps subtending semi- 
angles lo", 20°, 30°, 40°, SO", 60" at their (common) centre. 

3.9. Constant-density approximation to $ow near front stagnation point 

An approximation for use in the neighbourhood of the front stagnation 
point (a region important for heat transfer since the fluid temperature is 
greatest there and the boundary layer thinnest) is now obtained without 
any procedure of successively discarding inverse powers of K. It can be 
used to check some aspects of theories based on those procedures. 

The present approximation is based instead on the theory of incom- 
pressible flow ; thus it neglects variations of density, both (i) along the back 
of the shock wave-this is permissible wherever q does not vary much 
from +rr, in which case v,,, = Vsinq cannot vary enough to produce any 
significant variation of K = pl/po-and (ii) along streamlines behind the 
shock wave-this confines us to regions in which the velocity does not 
approach close to the local speed of sound. Both assumptions should be 
adequate in the region behind that part of the shock wave in which q varies 
between 80" and 90". 

The body shape in the region of interest is taken to be part of a sphere 
of radius a, since bodies with at least a spherical portion of surface near 
the nose are of great interest. For other bodies of revolution, however, 
the theory could reasonably be applied with a as a mean radius of curvature 
of the surface in the region just described. 

Taking incompressible flow behind the shock wave, and K constant in 
the boundary conditions at the shock wave, we shall show that all the 
equations of motion and boundary conditions can be satisfied by assuming 
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a spherical shock of radius c >a. We use spherical polar coordinates 
(r,  8, A) with the line 8 = 0 pointing upstream, and a Stokes stream function + 
such that 

where the suffixes on the v’s signify components. 
On the spherical shock wave, by (27) and (28), 

vcos 0 
V, = Vsin 8, K ’  

2) = -  

and these conditions are satisfied if 

iY = vcsin28 on r = c. 
Vc2  sin2 8 

+ ZK 9 a r  

(79) 

In axisymmetrical flow the only component of vorticity is 

But on the shock wave, by (43), 

(82) 
(K-1)2 Vsin8 

K C 
Wd = --* 

Further, in axisymmetrical flow, the ratio wA/( r  sin 0) remains constant 
along each streamline, since the intensity of each vortex ring changes 
during convection in proportion to its radius. But since 

(83 1 
WA - (K-l)2V 

- -  
r sin 8 Kc2 

on the shock wave, and all the streamlines pass through the shock wave, 
the ratio must have this constant value everywhere. 

Hence, by (81)’ 

p a2+ + 7B(cosec~$) sin% a = (K-  1)2 Vr2sin20 
C2 

everywhere. This equation will now be solved subject to the boundary 
conditions (SO), and it will be shown that the dividing streamline is a sphere 
of radius r = a < c. (Note that no boundary condition on the pressure 
need be applied at the shock wave ; the equation of motion determines the 
pressure once the velocity field is known, and the condition (43) on the 
vorticity was obtained as the condition that the boundary condition on the 
pressure is compatible with the equation of motion.) 

The solution of (84) under the boundary conditions (80) takes the form 

Z,!I = Y(r)sin20, (85) 

where 2 ( K -  1)2 Vr2 
Y”(Y)- - Y(Y) = ~ - 

Y2 K c2 ’ 

and vc2 
2K Y ( c )  = -, Y ’ ( c )  = vc. 
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The function Y(r) satisfying these conditions is easily found to be 

Y(Y> = ~ { 3 ( K - 1 ) 2 ( ~ ~  30K -5K(K-4)  +2(K-l)(K-6) 

(88) 

The solution given by (85) and (88) shows that the streamline t,b = 0 
divides at Y = a, the greatest root of Y(Y) = 0 which is less than c. (It can 
be shown that roots of Y ( r )  = 0 with 0 < r < c exist for all K > 1.) The 
streamline then continues along the sphere Y = a, and .hence the flow may 
be regarded as the flow about a solid sphere of radius a. 
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Figure 6. Ratio of stand-off distance of shock wave ahead of sphere at radius of sphere, 
as a function of K .  

Particular interest attaches to (c - a)/a, the ' stand-off distance ' of the 
shock wave as a fraction of the radius of the sphere. This is a function 
of K alone, a graph of which for K 3 4 (an inequality which by the physical 
significance of K must be satisfied for all gases) is given in figure 6. 
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One is interested also in the distribution of ve between the shock wave 

(89) 
and the sphere. By (78), ve Y'(Y) 

VsinO Vr a 

This is plotted against Y/C for a number of values of K in figure 7. The  
flow is seen to be in nearly (though not exactly) uniform shear, as predicted 
by Freeman's first approximation ($3.6) ,  but the velocity at the wall is not 
zero as that approximation would give. Freeman's second approximation 
to the velocity at the wall (derived from Bernoulli's equation and the Ivey, 
Klunker & Bowen value of the pressure) is, however, accurate to within 1 :d) 
for all the K's shown. Putting this a different way, the pressure on the 
surface derived from (89) is 

=-  

0.2 

that is, the maximum departure of the coefficient of sin28 from the Ivey, 
Klunker & Bowen value $ for K 3 4 is 0.01. 

- 
K =  14 

- 

I I I I I I I I 

Figure 7. Distribution of transverse velocity vo in the nose region of the flow around 
a sphere, plotted for different values of K (the density-ratio across the normal 
part of the shock wave). The coordinate Y (the distance from the centre 
of the sphere) takes the value c at the shock wave; the position of the body 
surface ( I  = a) in each case is shown by hatching. 

This agreement in the rate of pressure drop along the surface, near the 
nose, between two very dissimilar theories (the present one, which only 
approximates by taking the density constant, and the Ivey, Klunker & Bowen 
theory, which allows density variation but assumes large K ,  and hence a 
large reduction in streamtube area behind the shock wave) gives some added 
support to both, and makes one reasonably confident about the general 
view of equilibrium flow around bluff bodies, in the region where pressure 
is not a small fraction of pa V 2 ,  presented in this 3 3.  What should be done 
to treat the flow where, as a result of the pressure falling by a large factor, 
the streamtube area becomes large again, remains at present a mystery. 
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